Embedded Systems Specification and Design
Model-based Design and Verification

David Kendall
You will have noticed in the Pluscal translations of your algorithms, definitions such as
\[\text{Spec} == \text{Init} \setminus \text{[][Next]}_\text{vars} \]
where \text{vars} is defined as a tuple of the variables declared in your specification, e.g.
\[\text{vars} == \langle\langle \text{balance, pc, current} \rangle > > \]
appears in the BankAccount specification

In fact, \textit{all} of the Pluscal translations contain exactly the same specification of \text{Spec}

The definition of \text{Spec} is an example of a \textit{temporal formula}

\textit{TLA} is the \textbf{T}emporal \textbf{L}ogic of \textbf{A}ctions

\textit{TLA} seeks to minimise the need to use temporal formulas in specifications but cannot avoid them entirely, since we need to be able to talk about behaviours, not just states.

The purpose of this lecture is to explain the meaning of \text{[][Next]}_\text{vars} and, more generally, the meaning of \textit{temporal formulas} in \textit{TLA}
Example - HourClock

The pattern of

\[\text{Spec} \equiv \text{Init} \land \square[\text{Next}]._\text{vars} \]

can be seen clearly in the translation of a Pluscal version of Lamport’s hour clock example.

This emphasises the fact that a TLA\(^+\) specification is the conjunction of a \textit{state formula}, \textit{Init}, that determines the \textit{initial states}, and an \textit{action formula}, \textit{Next}, that determines what \textit{steps} are allowed from one state to another.

It specifies a system with only one state variable, \textit{hr}, which initially takes any value in the set \(1 \ldots 12\), and then is incremented at each \textit{step} until it becomes \(12\), at which point it is reset to \(1\) on the next step, and the process continues.
---- MODULE PCalHourClock ----
EXTENDS Naturals
(*
--algorithm PCalHourClock
variable
 hr \in 1..12;
begin
 while TRUE do
 if hr < 12 then
 hr := hr + 1;
 else
 hr := 1;
 end if
 end while
end algorithm
*)
* BEGIN TRANSLATION

VARIABLE hr

vars == << hr >>

Init == (* Global variables *)
\/
hr \in 1..12

Next == IF hr < 12
\THEN \ /
hr' = hr + 1
\ELSE \ /
hr' = 1

Spec == Init \ /
[] [Next]_vars

* END TRANSLATION

====
A state is an assignment of values to variables
A state expression is an expression that may involve the (unprimed) variables of the state
A state formula is a boolean-valued state expression
A behaviour is a sequence of states
A system is modelled as a collection of behaviours
Behaviours

Definition (Behaviour)

Given a specification S, a behaviour of S is an infinite sequence of states s_0, s_1, s_2, \ldots such that s_0 satisfies $Init$ and for $i \in \text{Nat}$, $s_i \xrightarrow{} s_{i+1}$ satisfies $[\text{Next}]_{\text{vars}}$

Example

$[hr : 1] \xrightarrow{} [hr : 2] \xrightarrow{} [hr : 3] \xrightarrow{} [hr : 4] \xrightarrow{} [hr : 5] \xrightarrow{} \cdots$

is the prefix of a possible behaviour of PCalHourClock
Timing diagrams

- The truth value of state formulas depend upon the values of the variables in the current state.
- Their truth values can change from state to state.
- Timing diagrams can be a useful tool for visualising the changing values of state formulas over time.

Each state formula’s value is shown as a line of the timing diagram.
- Line high – state formula is true.
- Line low – state formula is false.
State formulas

- State formulas are formed from simple propositions about states using the logical operators \((\land, \lor, \Rightarrow, \Leftrightarrow, \neg)\)
- For a behaviour \(s\) and state formula \(f\), we can ask whether \(f\) is true at some state \(s_i\) in \(s\), if it is we write \(s_i \models f\)

For which \(i\) do we have (a) \(s_i \models p \land q\), (b) \(s_i \models p \lor q\), and (c) \(s_i \models p \Rightarrow q\)?
Temporal Operators

So far, we can say what is true at each individual state but we can’t say anything about what is true of a behaviour as a whole.

How can we say something about behaviours as they evolve over time?

We introduce *temporal operators*.

TLA$^+$ uses the temporal operators \Box (always) and \Diamond (eventually).

- **Always**: $\Box \phi$ is true at state i in a behaviour s if ϕ is true in state i and every succeeding state in s.

- **Eventually**: $\Diamond \phi$ is true at state i in a behaviour s if ϕ is true at state i or at some succeeding state in s.

Always ($\Box \phi$)

Definition (Always)

$s_i \models \Box \phi$ iff $\forall j \geq i \cdot s_j \models \phi$

- $s_3 \models \Box p$
- $s_0 \not\models \Box p$
Eventually ($\Diamond \phi$)

Definition (Eventually)

\[s_i \models \Diamond \phi \iff \exists j \geq i \bullet s_j \models \phi \]

- $s_0 \models \Diamond p$
- $s_6 \models \Diamond p$
- $s_7 \not\models \Diamond p$
Examples of temporal formulas

Now we can make precise claims about the behaviours of our hour clock, e.g.

“The value of \(hr \) is always a natural number between 1 and 12”
\[\square(hr \in 1..12) \]

“The value of \(hr \) is eventually 7”
\[\Diamond(hr = 7) \]
Which of the following claims are true of the trace shown in the diagram below?

1. $s_9 \models \square q$
2. $s_9 \models \square \neg p$
3. $s_0 \models \square q$
4. $s_0 \models \square (p \Rightarrow q)$
5. $s_9 \models \Diamond p$
6. $s_0 \models \Diamond q$
7. $s_0 \models \Diamond \neg (p \Rightarrow q)$
Actions

TLA$^+$ allows us to make statements about the relationship of successive states in a behaviour. It uses *primed* variables to do this, e.g.

$$x' = x + 1$$

says that the value of x in the next state is equal to the value of x in the current state plus 1.

In TLA$^+$, any ordinary mathematical expression that includes primed and unprimed variables is a *transition expression*.

An *action* is a boolean-valued transition expression.

We can interpret an action, A, as a temporal formula by defining $s \models A$ to be true iff the first two states of s are an A-step, i.e. iff $s_0 \rightarrow s_1$ is an A-step.

A behaviour $s \models \Box A$ iff $s_n \rightarrow s_{n+1}$, for all natural numbers n.

David Kendall
CM0604/KF6009
Lecture 05
More on temporal formulas with \Box

For a behaviour, s, define s^{+n} to be the suffix of s obtained by deleting its first n states

$$s^{+n} \equiv s_n \rightarrow s_{n+1} \rightarrow s_{n+2} \cdots$$

So $s_n \rightarrow s_{n+1}$ is the first step of s^{+n}, and therefore $s \models \Box A$ is true iff $s^{+n} \models A$ is true for all n. Formally,

$$s \models \Box A \iff \forall n \in \text{Nat} : s^{+n} \models A$$

This can be generalised to any temporal formula F

$$s \models \Box F \iff \forall n \in \text{Nat} : s^{+n} \models F$$
Stuttering

So why isn’t the specification of our hour clock defined as

\[
Spec \equiv Init \land \Box Next
\]

… because this specification would not allow *stuttering steps* and TLA\(^+\) requires our specifications to allow stuttering steps.

A stuttering step is a step that leaves all of a specification’s variables unchanged

\[
[Next]_{vars} \equiv Next \lor UNCHANGED \text{ vars}
\]

So our specification says that any behaviour of the hour clock is one that satisfies *Init* (*Init* is true at \(s_0\)) and in which any step \(s_n \rightarrow s_{n+1}\) is either a *Next* step or it leaves the value of *hr* unchanged.

We won’t go into why insisting on allowing stuttering is a good idea here.
Checking temporal properties

We can define a property, $TypeOk$, for the hour clock as

$$TypeOk \equiv hr \in 1..12$$

and then use TLC to check the temporal property $Spec \Rightarrow \Box TypeOk$ — this is equivalent to checking that $TypeOk$ is an invariant of $Spec$

$TypeOk$ is an example of a safety property, i.e. a property, which if true, shows that some “bad thing” never happens

We can also state a temporal property such as

$$Spec \Rightarrow \Diamond (hr = 12)$$

i.e. eventually the hour clock reaches noon

$Spec \Rightarrow \Diamond (hr = 12)$ is an example of a liveness property, i.e. a property, which if true, shows that some “good thing” does eventually happen
Demo: Use TLC to check the previous 2 properties

We see that the liveness property is not satisfied because Spec can stutter forever, i.e. carry on taking steps in which the hr variable remains unchanged

We can require that these behaviours are excluded by adding a fairness requirement to the specification

In Pluscal, we do this by adding the word fair in front of algorithm.

Demo: Try this for the hour clock spec
Fairness (ctd)

In TLA⁺, we do this by adding $WF_{vars}(Next)$ to the definition of $Spec$

Let $\langle A \rangle_{vars} \equiv A \land (vars' \neq vars)$, then $\langle A \rangle_{vars}$ is an A-step that changes $vars$, and if $vars$ is the tuple of all system variables, then $\langle A \rangle_{vars}$ is a non-stuttering A-step.

The **weak fairness** formula $WF_{vars}(A)$ is then defined by

Definition (Weak fairness)

$WF_{vars}(A)$ is satisfied by a behaviour $s_0 \rightarrow s_1 \rightarrow s_2 \cdots$ iff there is no n such that $s_n \rightarrow s_{n+1} \cdots$ has no $\langle A \rangle_{vars}$ step but $\langle A \rangle_{vars}$ is enabled in all of its states.
Classifying temporal properties

- **Safety** – “Nothing bad happens”
 $$\square \neg (in_{cs1} \land in_{cs2})$$

- **Liveness** – “Something good happens”
 $$\square (\text{request} \Rightarrow \Diamond \text{receive})$$

- **Fairness** – “Computation is fair”
 $$\square \Diamond \text{coffee_ordered} \Rightarrow \square \Diamond \text{coffee_delivered}$$
 - This is an example of *strong* fairness
Examples of typical specification patterns

- **Invariance** (□¬ P)
 - □¬ (systemState == DANGEROUS)
 - □¬ ((crossing == OCCUPIED) ∧ (gate == OPEN))

- **Bounded Response** (□(P ⇒ ◇Q))
 - □(waitingForService ⇒ ◇serviceReceived)
 - □(facingObstacle ⇒ ◇(distanceFromObstacle >= 5))

Nearly all of the specifications that you write will be either an *invariance* property or a *bounded response* property.

More practice in writing temporal specifications to come in the lab sessions.
Acknowledgements

These slides are based on material in Barland, I.; Vardi, M.; Greiner, J. *Model Checking Concurrent Programs*, Connexions Web site.
http://cnx.org/content/col10294/1.3/, Oct 27, 2005. and Lamport’s hyperbook.